



## Studying the Impacts of Moisture on Energy Efficiency and Environmental Friendliness of Indoor Environment

Muhammad Faisal Rehman<sup>1</sup>, Ashfa Sattar<sup>2</sup>, Ghousia Saeed<sup>3</sup>

### Abstract

Moisture control is fundamental to the proper functioning of any building. Controlling moisture is an important to protect occupants from adverse health effects and to protect the building. Mitigating the utilization of energy component in environmentally friendly energy efficient indoor architectural spaces is reducing the effective usage of carbon. In pursuance of investigating the characteristics of energy efficient spatial systems and building fabric, it is usually depicted through application of well-insulated walls, a ventilated roof with a thick layer of insulation over the ceiling, quality windows with low-E glass, and a high-efficiency warming and cooling framework on an already constructed building structure or during executional process. It has been studied that unexpectedly number of buildings could not produce the desired results while having these highlighted features encapsulating energy efficiency. These buildings are observed to have considerable levels of moisture content, indoor air pollutants and untimely disintegration caused by moisture absorption and collection in walls and ceilings. The architectural spaces and building systems could not completely protect dividers, ceilings, and windows, making the building less effective and uncomfortable for habitation. This research paper would be an effort to explore and identify the grass root causes of this phenomenon and would suggest and recommend the steps and procedures to avoid these issues and finding out viable solutions to control the moisture content and effects of comfort within indoor spatial setting of architectural building systems. Through case studies and comprehensive research on this subject, it was inferred that the details of architectural components such as windows, doors, walls, and ceilings shall facilitate the tightness of air, controlling the moisture contents from entering building's interior periphery.

**Key Words:** energy efficient spatial systems, moisture content, indoor air pollutants, grassroot causes

### 1. Introduction

According to research, more than 76% of all U.S. power utilize and more than 40% of all U.S. vitality utilize and related greenhouse gas (GHG) emanations are utilized to provide comfortable, well-lit, private, and commercial buildings—and to give space conditioning and lighting for mechanical buildings. Effective assembly need technology goals for execution and cost, will make it conceivable to mitigate this percentage of vitality utilize by 2030 in show disdain toward of forecasted development in populace and commerce

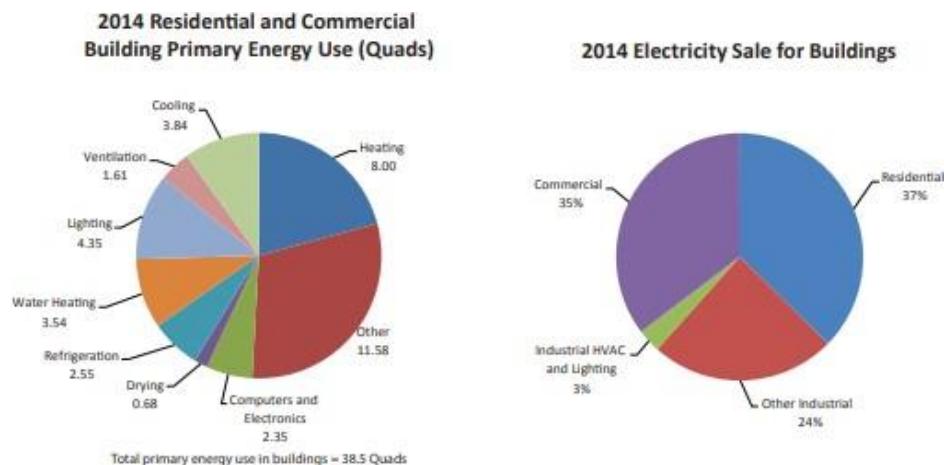



Figure-1

Action. Moisture abundance in buildings, whether happening interior the envelope or outside, brings rise to several problems. First, a high dampness substance favors corrosion, degradation, and construction harm. This appropriately constitutes a significant constraining calculate for a building's basic execution all through its whole life time, which requests a persistent observing and control of dampness exchange through dividers and establishments.

Such an issue is additionally entirely related to the occupant health and efficiency. There exists a strong connection between high dampness within the envelope and poor indoor air quality (IAQ) inside, since condensation inside the structures can influence adversely the occupants' health. Water vapor movement through the envelope

<sup>1</sup> Assistant Professor, The Department of Architecture, University of Engineering and Technology Peshawar, Abbottabad campus, Abbottabad, KP, Pakistan

<sup>2</sup> M. Arch Scholar, The Department of Architecture, University of Engineering and Technology Lahore, Punjab, Pakistan

<sup>3</sup> Assistant Professor, The Department of Architecture, University of Engineering and Technology Peshawar, Abbottabad campus, Abbottabad, KP, Pakistan

induces in fact high humidity levels interior the building materials, coming about in microbial development; such microscopic organisms and parasitic spores are then transported inside by a negative weight, because it was appeared. Survival of these destructive microbes within the walled in area is strongly related to the relative stickiness and temperature of the contribute: a commonly acknowledged limit for the survival of house clean mites is 45% relative humidity (RH) at 20-22°C.

To this point, the ventilation system licenses control of the relative humidity interior the building, keeping it at optimal levels; this in any case creates unavoidably a few pressure differences between indoor and open air, as outlined in Kalamees et al. (2010). The appropriately induced positive pressure can influence the building execution in several ways. For occurrence, Chen et al. (2017) found that in high-rise buildings this may increment vitality consumption due to over-pressurization of the lower floors. Regarding structural issues related to condensation within the building envelope (e.g., erosion and rot of the building fabric and/or destitute execution of cover due to interstitial condensation between the walls layers), dampness in alteration in structures has been addressed in a few works, see e.g. You et al. (2017) and references cited in that. You et al. (2017) computed quantitatively the effect of open-air temperature, stickiness proportion and discuss in alteration within the walls, showing at that point appeared that the additional warm conductivity of the walls, created by the dampness relocation and stage alter within the envelope, depends strongly on the thermal gradient but exceptionally feebly on the pressure difference indoor-outdoor.

Air may be a mixture of dry air and humid air the weight of air is entirety of dry air pressure and weight of water vapor in it. At atmospheric weight consistent add up to sum of water vapor that measures air can hold may be a work of its temperature and warm air can hold more water vapor than cold air relative stickiness is the proportion of the sum of water vapor in air on the full amount of water vapor the air can hold at a specific temperature. The back-ventilation contention with metal roof tops comes from involvement with metal rooftops over low-moisture-load walled in areas. Lots of warehouses with metal rooftops introduced straight forwardly on sheathing have worked fair fine. Parts of commercial buildings with metal roof tops introduced straight forwardly on sheathings have worked fair fine. Parts of production lines with metal rooftops introduced straightforwardly on sheathings have worked fair fine. Over swimming pools, clinics, exhibition halls, craftsmanship exhibitions or data-processing centers, the disappointments have been legion. The distinction is beautiful self-evident. No insides moisture... no issue. Parts of insides moisture... parts of issues. The issues go away with two approaches that got to be combined. To begin with, keep the moisture from the interior from getting to the underside of the metal roof. Moment, recognize that you are never aiming to be perfect in keeping the moisture from getting to the underside of the metal roof, in this manner one have to supply sufficient compatibilities for finishing it, the moment it reaches there.

The impact of a positive weight on the moisture accumulation within the building envelope was inspected in Chen et al. (2016) for a hot humid climate. The creators found that a small positive weight within the range 1-2 Pa can reduce the amount of infiltration-induced dampness for all walls, and observed an concurring negative change within the yearly mold index value. The secontras that in private buildings with high humidity load in a cold climate a negative pressure might be vital.

Controlling dampness flow in a building has critical impacts on inhabitant well-being and safety, comfort, building toughness and energy efficiency. Building science is concerned with two fundamental shapes of dampness stream: fluid and vapor. Fluid water moves as bulk water and capillary activity; water vapor moves through air spillage and dissemination.

Hygrothermal gathering plan is a fundamental component for avoiding dampness harm and ensuring longer benefit life for buildings (Work, 2004). A few gaps in regular plan hone can influence potential dampness issues. Hygrothermal plan comprises of selecting and dimensioning structures, making point by point drawings and selecting determinations for basic joints and other records and rules for operation and upkeep (Lehtinen, 2000). Innumerable cases, hygrothermal plan is conducted by engineers (engineering, basic and warming, ventilation and air-conditioning plan) and has not been built up as a separate area. To evaluate and predict the long-term hygrothermal execution of examinations are required. Since research facility and field tests are costly and time-consuming, calculations and recreations are progressively utilized to evaluate the hygrothermal conduct of building components. During the past few decades, computer programs for simulation have been created, and progressed commercially accessible recreation devices for individual computers have replaced research facility apparatuses; they are simple to utilize and incorporate data bases of build in materials and climatic information (Kalamees, 2006).

## 2. Literature Review

The ASHRAE 2001 Handbook of Fundamentals [HOF, 2001] is a well-established, widely known standard reference for the design of indoor environments. It primarily focuses on moisture from the perspective of vapor and its role in controlling the indoor environment. It gives a brief treatment of the effects of bulk water intrusion.

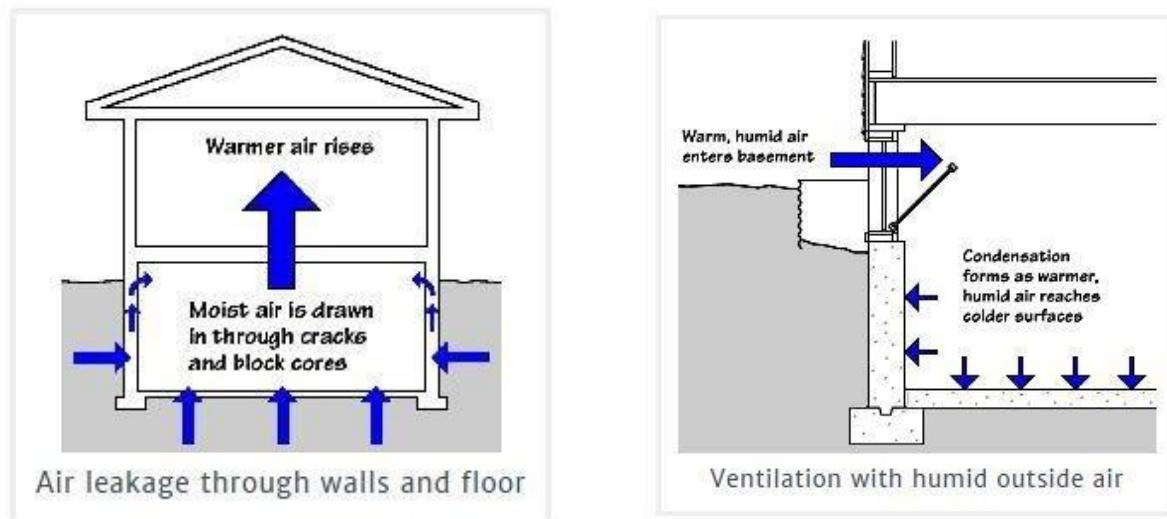
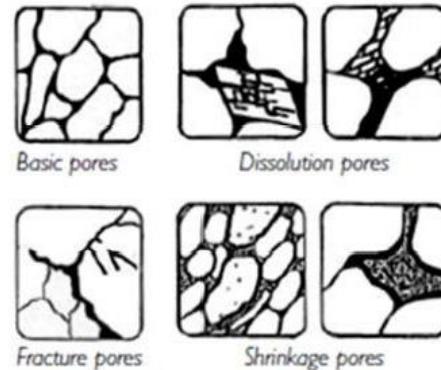
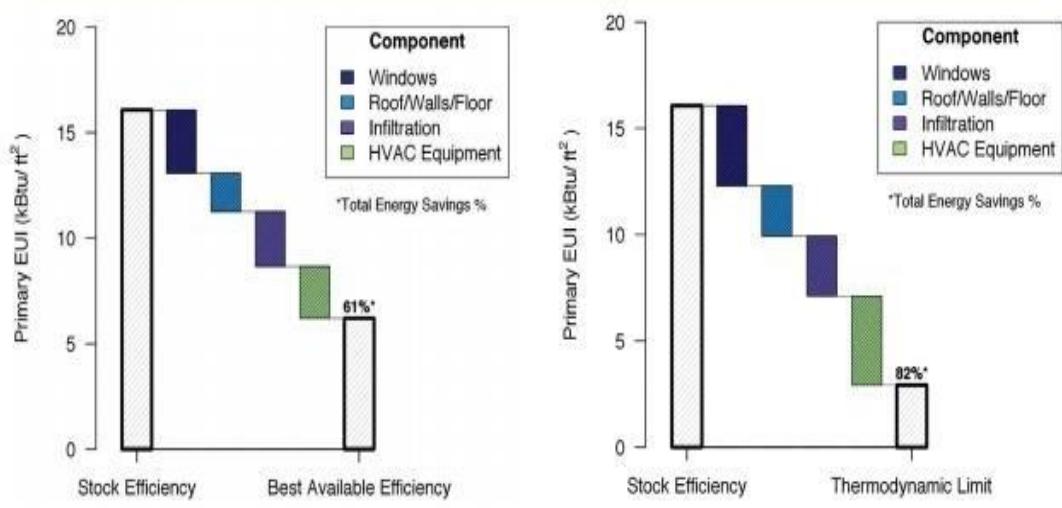
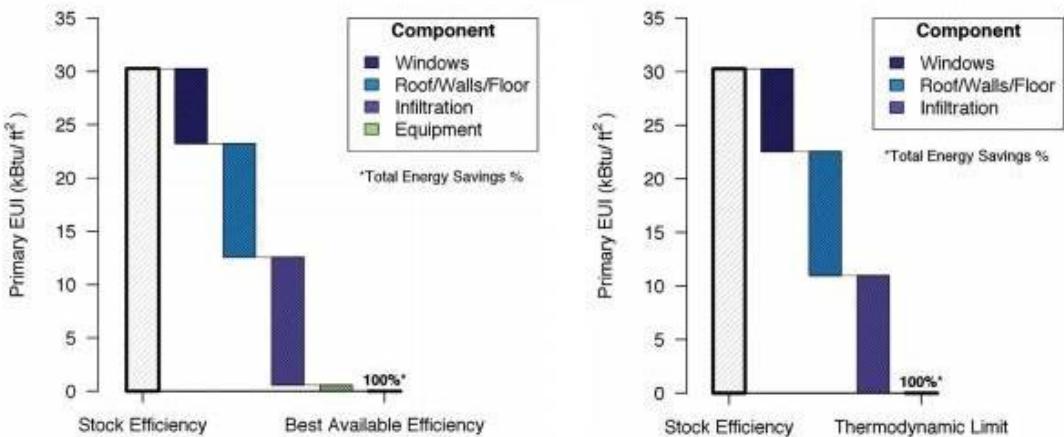
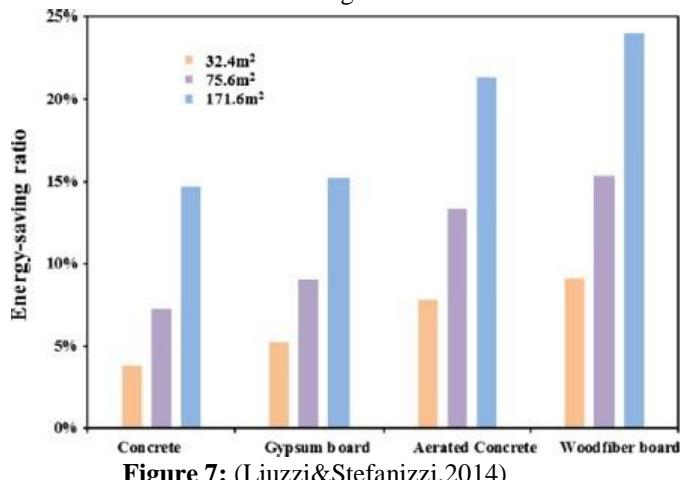



Figure 2

Figure 3



Figure 4



**Figure 5:** Use of most efficient wall, window and HVAC equipment now available could reduce residential cooling 61%. The Theoretical limit is an 82% reduction.



**Figure 6:** Use of most efficient wall, window and HVAC equipment now available could eliminate residential heating



**Figure 7:** (Liuzzi&Stefanizzi,2014)

### 3. Rules for Energy-Efficient Buildings

#### Rule#1

Seal all joints within the building shell. It doesn't make sense to contribute to well-insulated walls and ceiling show ever do little to block air stream around and through the insulated cavities. Wood-to-wood and drywall-to-wood joints within the outside shell of a building are not air proof and ought to be fixed with gaskets, froths, caulk, or discuss boundary movies. The outline Air Leakage Pathways appears where these fixing items are required in customary private wood frame development. Other sorts of private and commercial building frame works have comparable pathways. Since buildings are continuously moving in reaction to changing wind, dampness, and temperature conditions, it is basic that air-sealing items last as long as the structure and be competent of withstanding development. Building gaskets are ideal to foams and caulk since they final longer, react superior to development, and don't depend on grip to preserve and is cussseal (see Building Gaskets). Most outside air-control movies("housewrap") are of flawed esteem since they are troublesome to introduce. Appropriately beneath field conditions and have a moderately brief lifetime. Stabilized polyethylene movies (see Air-Vapor Movies) can give dependable insides air-control in cold or mild climates given the wall or roof is planned to avoid vapor condensation.

#### Rule#2

Dispose of unnecessary gaps and seal all those that are unavoidable. Find electrical outlets and switch boxes on insides dividers wherever conceivable and attempt to utilize surface-mounted lights rather than recessed installations on protects ceilings. Where electrical work on outside dividers and ceilings is unavoidable, firmly seal all box edges and wiring gaps. Seal plumbing stacks with sheet rubber gaskets slid over the channels and mechanically clamped around the edges. Seal fire chases around chimneys with sheet metal ribs and high temperature sealants. Protected and gasket upper room get to entry ways or supplant them with air-sealed adaptations (see Loft Get to). Construct detachable gasketed tops for whole-house fans or superior however, don't introduce this sort of fan in an unheated space. Dodge air spillage through unlocked spaces behind baths, showers, staircases, and other development adjoining to outside dividers by pre-installing ply wood or dry wall air obstructions.

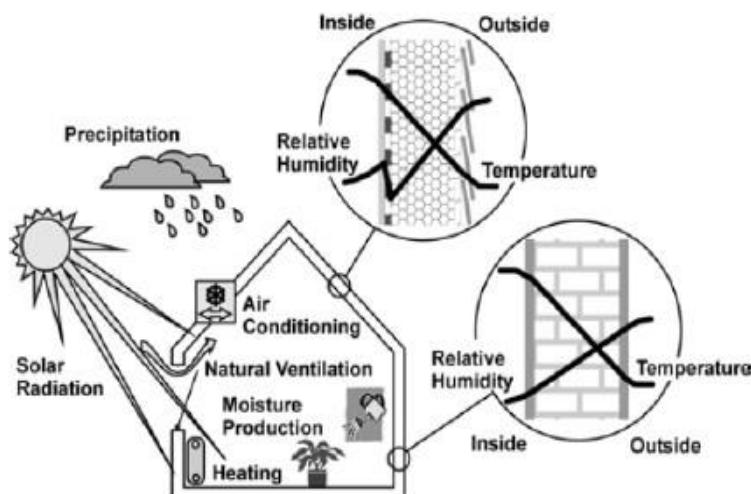
#### Rule#3

Block warm conduction path ways through surrounding amble (see Warm Conduction Pathways). Since wood is tightened extra ordinary cover and customarily surrounded dividers and ceilings are regularly 20% amble, warm

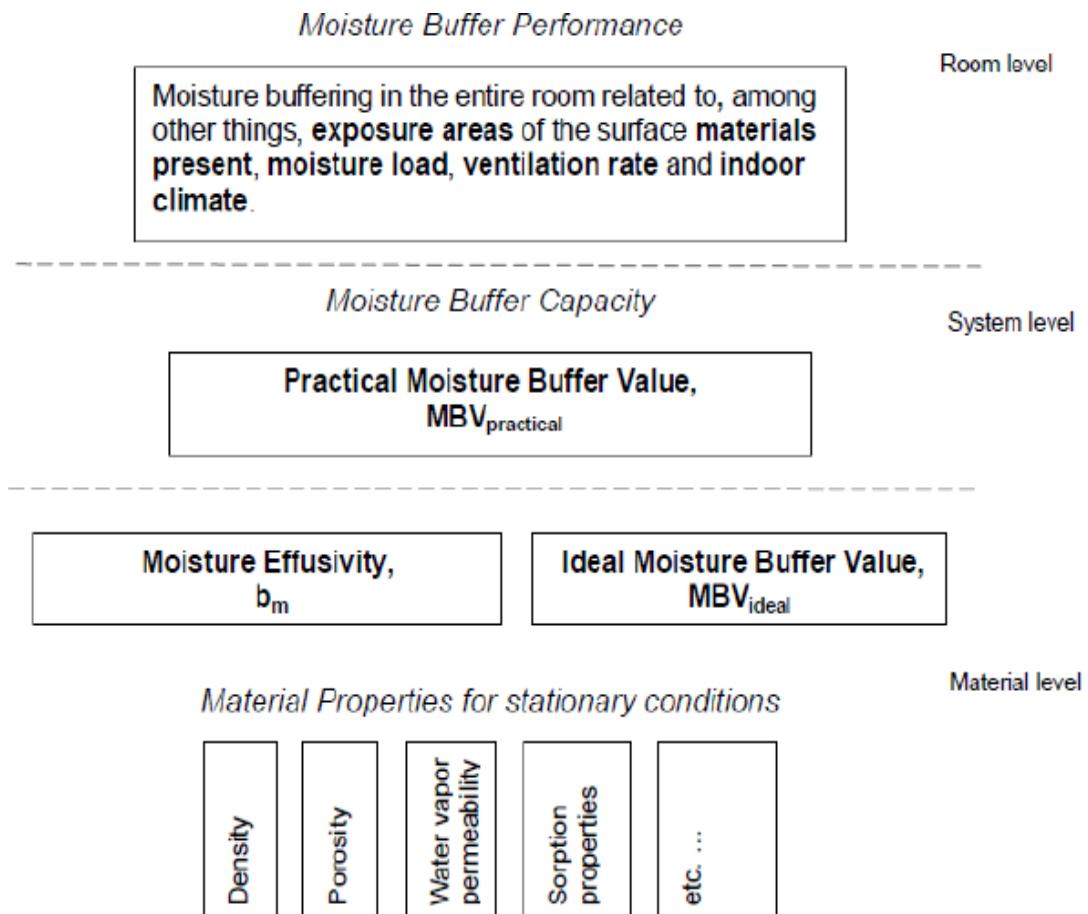
misfortune through the wood may be a major component of the full conduction warm misfortune of a building. As a case, a2x6 wall with R-19 fiberglass batts and plywood sheathing regularly has a viable R-value of less than R-15. An effective way to decrease surrounding warm loss is to apply protection sheathing: 1" is the least required for mild climates and 1-1/2" or more ought to be utilized in hot or cold climates. As a side advantage, outside protection sheathing will enormously diminish the potential for water condensation on the back side of wood sheathing. As an alternative to foam sheathing, consider "strapping" the insides with level 2x2's and protection in between the strapping.

#### Rule#4

Totally fill all cavities with insulation. Indeed, the smallest gaps between cover and surrounding can cause a critical loss of cover performance, particularly where at that point may be a space between the cover and the drywall that permits air to move openly. Cover ought to totally fill all wall and ceiling cavities and ought to be installed flush with the inside's surfaces. When utilizing batt separator such as fiberglass, continuously utilize un faced batts: if cut legitimately, they will remain in put in both walls and ceilings without any back. Maintain a strategic distance from kraft-faced or foil-faced fiberglass since the paper facing covers up the insulation from view, making it troublesome to decide in case it has been fit appropriately. If you must utilize confronted separator, staple the confronting to the edges of the joists or studs, not to their sides, to maintain a strategic distance from making any depth behind the drywall. As an elective to batt cover, utilize a spray-applied cellulose or fiber glass with an adhesive binder, or utilize spray connected foam.


#### Rule#5

I sulated foundation enough, ideally on the outside. Basements are occasionally protects to the same measures as upper floors, indeed though basement walls regularly have a comparable exterior exposure. When an uninsulated or in-effectively protects basement is afterward changed over to living space, it is frequently troublesome to retrofit adequate insulation, and numerous basement cover procedures can make condensation issues that can lead to form and wood decay. Basements ought to be legitimately protects amid the starting development prepare, ideally on the exterior. Exterior insulation decreases the chance of condensation and disposes of the extra ordinary warm cycling that causes establishments to break.


#### Rule #6

Most ventilation frameworks alter stream rates as it were by turning motors off and on or by utilizing dampers. Significant vitality savings can be accomplished utilizing proficient, variable air volume frameworks with variable-speed fans together with appropriately planned and fixed ducts. There are also major openings for moving forward the proficiency and bringing down the cost of variable speed motors and engine controls. Developments that improve the execution and lower the taken a toll of wide band gap semiconductors are an imperative portion of this work.

This examination accepts that changes in windows and the opaque envelope were connected to begin with, since they are inactive approaches, and the remaining cooling request was then met with more productive hardware. As a result, envelope enhancements are appeared as contributing more to the generally essential vitality utilize intensity reductions in both cases.



**Figure-8:** Coupling concept for the simultaneous treatment of the hygrothermal effects of interior heat and moisture loads, exterior climate and transient behavior of envelope components. (Source: Kunzel, 2003)



**Figure-9:** Scheme for the moisture buffer performance. Source: NORDTEST project, Report, 2005)

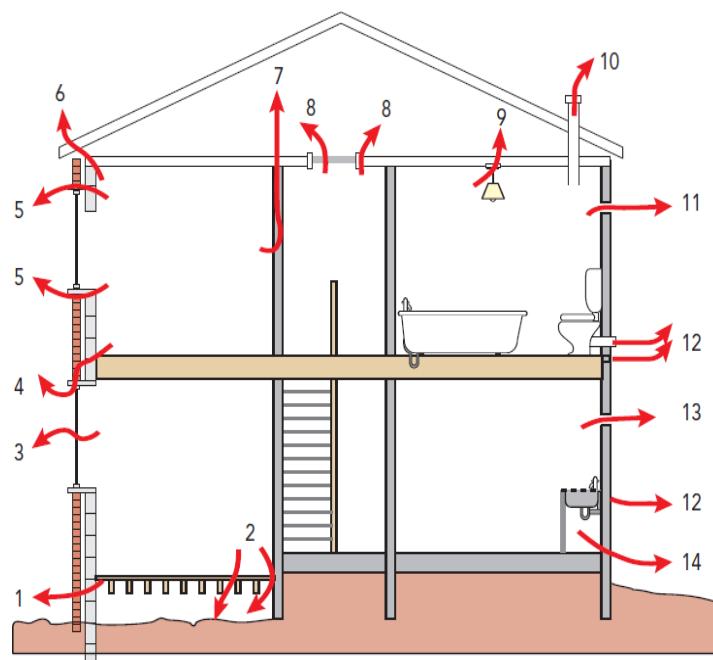



Figure 1 Potential air leakage paths (the numbered points in section 2.1 give a description for each path).

Acti  
Go to

**Figure-10:** Air Leakage Pathways

- A – between wall top plates and drywall
- B – through cracks in recessed fixtures
- C – short circuits through attic insulation
- D – between wall top plates and drywall
- E – through gaps in siding and sheathing
- F – through holes in electrical boxes
- G – between bottom plate and drywall
- H – between bottom plate and subfloor
- I – between rim joist and subfloor
- J – between rim joist and top plate
- K – between top plates and drywall
- L – around window and door jambs
- M – leaky windows and doors
- N – between window framing and drywall
- O – between bottom plate and drywall
- P – between bottom plate and subfloor
- Q – between rim joist and subfloor
- R – between rim joist and sill plate
- S – between sill plate and foundation wall
- T – through cracks in foundation wall
- U – between floor and foundation wall
- V – through cracks in floor slab

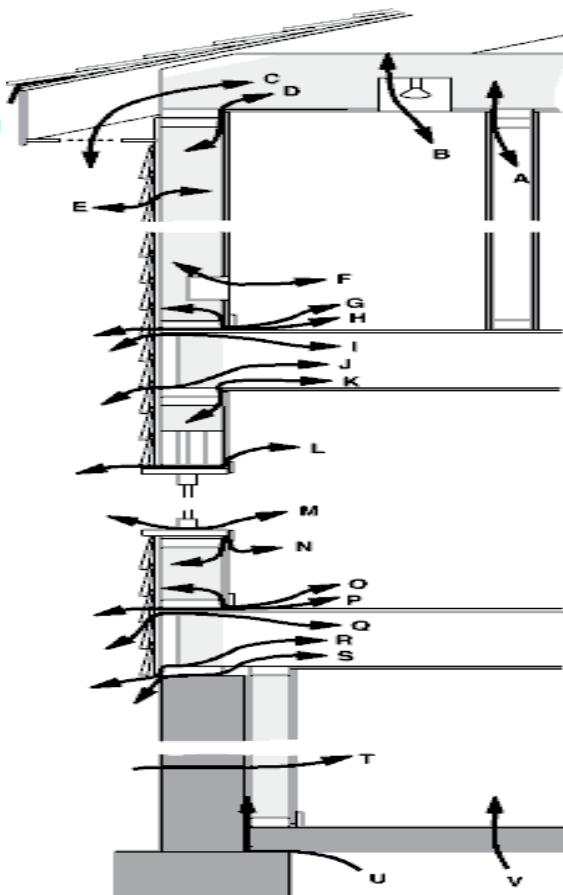



Figure-11

- A – uninsulated joists
- B – minimal insulation above fixtures
- C – insufficient ceiling insulation
- D – insufficient insulation at corners
- E – uninsulated double top plates
- F – uninsulated wall studs
- G – poorly fitted insulation
- H – uninsulated electrical boxes
- I – uninsulated bottom plate
- J – inadequately insulated rim joist
- K – uninsulated double top plates
- L – uninsulated window header
- M – improperly insulated window gaps
- N – uninsulated bottom plate
- O – inadequate rim joist insulation
- P – uninsulated sill plate
- Q – inadequate wall insulation
- R – uninsulated slab

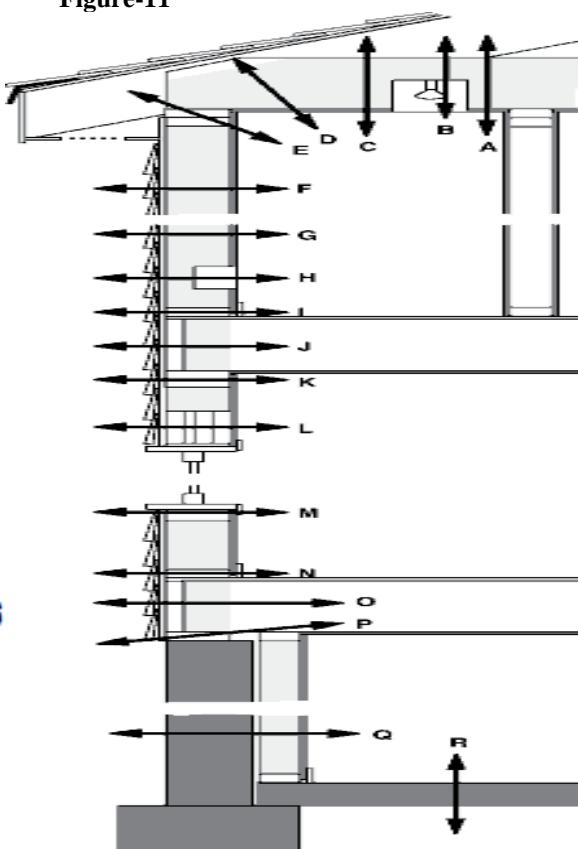



Figure-12

#### 4. Methodology

Essential and auxiliary information was collected through analysis and observation of case studies in concerned topic and published materials to set up the standard profile for new designers and researchers. After exercises were performed for data collection, a standardized framework was configured to investigate the depth of the issue under consideration.

##### 4.1. Effects of Moisture Flow on Occupants

Moisture flow can affect building occupants in different ways, including

###### 4.1.1. Health and Safety

Dampness isn't frequently thought of in terms of occupant wellbeing and security. Since of the potential for the aggregation of water to cause bacteria and shape development, some indoor discuss quality experts consider water to be a pollutant.<sup>1</sup> Dampness is the key ingredient for mold and microscopic organisms' development. How can these organisms be musty, unsightly and a cause of wood spoils, but they can cause asthma and unfavorably susceptible responses in many people. Overabundance dampness (especially within the discuss) too gives a favorable environment for dust mites and cockroaches, genuine sources for asthma and hypersensitivity issues. Though people don't ordinarily respond to the animals themselves (but to possibly shout and reach for a rolled-up magazine), insect and dust bug dropping scan cause asthma and allergic responses in numerous individuals. Another sad side-effect of these creatures' presence is that they frequently bring around expanded utilize of bug sprays. Young children in specific can be amazingly vulnerable to harms and can endure impacts such as allergic reactions.

###### 4.1.2. Comfort

Moisture within the form of water vapor plays such a key part in how we perceive comfort, relative humidity could be an essential driving constrain in deciding how to operate building frameworks. Agreeing to ASHRAE2, the consolation zone for buildings within the winter is between 68° and 75° F at a relative mugginess of 30 percent to 60 percent. During summer conditions, the comfort run is found between 72° and 78° F at 25 percent to 60 percent relative stickiness. It's worth noting that the ranges for comfort and indoor air quality don't continuously compare (for case, 60 percent relative humidity in a cold climate is conducive to mold and decay in buildings with ordinary levels of discuss fixing and insulation).

###### 4.1.3. Acute Effects

In tense impacts are those that happen quickly (e.g., inside 24 hours) after exposure. Chemicals discharged from building materials may cause headaches, or form spores may result in irritated eyes and runny noses in touchy people in no time after introduction. By and large, these impacts are not long in during and vanish without further ado after exposure closes. In any case, exposure to a few bio contaminants (organisms, microscopic organisms, and infections) coming about from dampness issues, poor maintenance or insufficient ventilation have been known to cause genuine life-threatening respiratory infections which themselves can lead to chronic respiratory conditions.

#### 4.2. Performance Effects

Significant quantifiable changes in people's ability to concentrate or perform mental or physical assignments have been appeared to result from modest changes in temperature and relative stickiness. In expansion, later ponders recommend that the comparable impacts are related with indoor pollution due to need of ventilation or then earners of pollution sources. Gauges of execution misfortune from poor indoor air quality for all buildings propose a 2-4% misfortune on normal. Future investigations should advance archive and measure the impacts.

#### 5. Conclusion

Moisture control is fundamental to the proper functioning of any building. Controlling moisture is important to protect occupants from adverse health effects and to protect the building. The constructability of any architectural building fabric shall conform to the following aspects which encapsulate the moisture controlling mechanism and framework that is of mandatory nature to monitor.

- **Air barrier materials** should be installed so they can be easily sealed at the joints and penetrations. Sealants that complete the air barrier should be installed before access to the air barrier is blocked.
- **Rainwater control** through shingling of the drain plane and the flashing for roof, walls, windows, doors, and other penetrations should be correctly installed.
- **Insulation** should be installed so that it makes as complete a layer as possible (i.e., no voids in cavity insulation, no uninsulated cavities).
- **The location of plumbing lines** should be checked, Cold water lines, chilled water lines and internal roof drains should be insulated; pressure tests should have been completed prior to installation of insulation and enclosing finishes. Access to valves should be available. Wet rooms should be assembled using only moisture- and mold-resistant materials.
- In **HVAC systems**, condensate pans should be sloped and plumbed correctly. Access panels should be installed downstream of the coils so the coils and ductwork can be inspected and cleaned. Ductwork and return plenums should be air sealed and tested. Duct insulation should be installed, and the ductwork sealed. Chilled water and refrigerant lines should be insulated and sealed.

- **Materials** that need to be installed wet or that became wet accidentally must be dry before cavities are enclosed (e.g., concrete, concrete masonry units or porous insulation must be dry before they are enclosed by gypsum board walls; crawlspaces must be drained and ground covering installed before OSB floor decking is installed) or flooring (e.g., vinyl flooring on concrete slabs) is installed on them. Several tests may need to be performed

## References

Atlanta, B., & Young, D. C. (2012). Effect of Airtight Building Enclosures in High-Rise Residential Buildings.

Bhanware, P. (2017). Case study of an ECBC Compliant, Energy Efficient Building: Aranya Bhawan, Jaipur. A practical guide to building airtight dwellings. (n.d.).

Buildings and Climate Change, Summary for Decision Makers, United Nations Environment Programme, 2009.

Gawin, D., Kosny, J., & Ridge, O. (n.d.). Effect of Moisture on Thermal Performance and Energy Efficiency of Buildings with Light weight Concrete Walls, 149–160.

Glass, S. V, Kochkin, V., Drumheller, S. C., & Barta, L. (2015). Moisture Performance of Energy-Efficient and Conventional Wood-Frame Wall Assemblies in a Mixed-Humid Climate, 759–782.

Jun, H., Ho, S., & Tai, J. (2014). The effect of moisture transportation on energy efficiency and IAQ in residential buildings. *Energy & Buildings*, 75, 439–446.

Liuzzi, S., & Stefanizzi, P. (2014). Fundamental Parameters of Heat and Moisture Transfer for Energy Efficiency in Buildings Fundamental parameters of heat and moisture transfer for energy efficiency in buildings, (November).

Liuzzi, S., & Stefanizzi, P. (2014). Fundamental Parameters of Heat and Moisture Transfer for Energy Efficiency in Buildings Fundamental parameters of heat and moisture transfer for energy efficiency in buildings, (November).

Owning and operating an airtight building will increase its energy performance and lower its carbon footprint. (n.d.).

Review, Q.T. (2015). Quadrennial Technology Review An Assessment Of Energy Technologies and Research Chapter5: Increasing Efficiency of Building, (September).

United states Environmental Protection Agency, Moisture Control Guidance for Building Design, Construction and Maintenance. EPA 402-F-13053 | December 2013 | www.epa.gov/iaq/moisture.

Woloszyn, M., Kalamees, T., Olivier, M., Steeman, M., & Sasic, A. (2009). The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings, 44, 515–524.

Woloszyn, M., Kalamees, T., Olivier, M., Steeman, M., & Sasic, A. (2009). The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings, 44, 515–524.

Work, F. (2004). Building Moisture and Durability Past, Present And, (October). (Woloszyn, Kalamees, Olivier, Steeman, & Sasic, 2009)

Work, F. (2004). Building Moisture And Durability Past, Present And, (October).

Zhang, M., Qin, M., Rode, C., & Chen, Z. (2017). Moisture buffering phenomenon and its impact on building energy consumption. *Applied Thermal Engineering*, 124, 337–345.