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Abstract  

In Survey Sampling, while we are dealing with sensitive issues, it is a challenge to get the accurate and unbiased 

answers from the respondents. To fulfill this need researcher exert on discovering such methodology which can help 

to get accurate responses from respondents in case of sensitive issues. One of the most famous techniques amongst 

these techniques is randomized response technique. In current research we discuss two dimensional tables and derive 

the misclassification probabilities for various randomized response techniques. The transition matrices of conditional 

misclassification probabilities are used to get perturbed or misclassified data and then Chi-square test of independence 

between two attributes is carried out. The results of chi-square test of independence calculated for perturbed data show 

that variables are found to be dependent which were independent originally, depicting that misclassification can 

change the status of dependence in the data. This paper has great contribution towards checking independence status 

of data while dealing with sensitive issues, where data can be misclassified. The derived matrices of conditional 

misclassification probabilities can be used acquire estimates of log-linear model for numerous randomized response 

techniques. 

Keywords: Misclassification, Randomized Response, Perturbation, Independence, Chi-square test of association, 

Sensitive issues 

 

1. Survey Sampling  

Survey sampling is a technique of collecting information about any certain characteristic of population on the basis 

of a subset or a part of population. Survey sampling is very useful in the cases when our population is enough large 

but we do not have much time, money, human power and resources to scrutinize every individual of our population, 

to draw inference about certain characteristic. Our interest in sampling is to obtain reliable, authentic and accurate 

results and it becomes nearly impossible to do so in case of sensitive or socially stigmatized variables. So while we 

are dealing with sensitive variables, it is obvious that there arises a bias. This bias is specifically referred as Social 

Desirability Bias (SDB), when variable of interest makes respondents socially stigmatized. SDB is stated as a bias 

which arises when respondent conceals or hides the true response of a sensitive or highly controversial issue due to 

the fear that if he/she discloses the right information so that makes him/her socially undesirable or stigmatized. 

Sensitive issues can be like harassment at workplace, practicing a fraud, use of illegal drugs or alcoholic beverages, 

having extra marital affairs, earning or gaining illegal income, evading income tax and having savings in forms of 

prize bonds. In such cases we search for some other data collection technique.    

 

2. Randomized Response Technique (RRT) 

As we discussed above that in case of sensitive variable, our usual survey methods fail to estimate the parameters of 

concerned distribution. Because, we know the possession of sensitive attribute results in biased and inaccurate results 

and our usual survey methods which are applied in case of un-harmful / innocuous questions are not appropriate to 

apply in case of sensitive issues and if applied then there is a great chance of un-true results. So, it was desired to find 

some other methods that raise the factual responses from respondents and also lessen the response error. To fulfill this 

need researcher worked on finding some methodology, which will be successfully dealing with sensitive issues. One 

of the most famous techniques among these techniques is randomized response techniques (RRT). Warner (1965) is 

pioneer, who introduced RRT to deal with sensitive variables. He introduced this technique to find the proportion of 

sensitive/ socially stigmatized variables. This technique is very useful to lessen SDB or evasive answer bias up to 

great extent. It can also be useful to enhance the collaboration between interviewer and interviewee to work together 

at one end and to keep up privacy and confidentiality level of interviewee at other end. The respondent answers to the 

questions, which appear to him, using RRT of cards or spinner as specified by the researchers. Respondents have to 

answer in the form of a ‘yes’ or ‘no’. As respondent answers to the questions independently un-seen from the 

interviewer so privacy of respondent remains intact and he answers truthfully and as a result bias reduces. Warner 

(1965) randomized response (RR) methodology is extended by many researchers like Greenberg et al., (1969), Moors 

(1971), Mangat and Singh (1990), Mangat (1994), Mahmood et al., (1998) and Christofides (2003), Huang (2004) 

Kim and Warde (2004, 2005), Kim and Elam (2007), Singh and Tarray (2012, 2014), Narjis and Shabbir (2022) and  

Hsieh et al., (2022). Singh et al., (2021) and Singh and Singh (2022) presented their papers for estimating population 

proportion in case of sensitive character using negative binomial and poisson  as a randomization device. 

 

3. Misclassification 

3.1. Two dimensional or contingency table 

 When every member of a population can be divided into two categories, we say that the categories are mutually 

exclusive and exhaustive as a whole.  A member chosen at random will fall into one of the two groups, with probability 
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pi. A structure is imposed when cells are described in terms of groups of two variables. A rectangular array with rows 

belonging to one category and columns belonging to the other category represents the natural organization of two 

variables.  A detailed analysis on contingency table has been done by many researchers like Johnson and Wichern 

(2006) and Fujisawa and Tahata (2022). The position of a specific cell talks about the characteristic of an individual 

falling into them. The probability of falling an observation into ith row and jth column is denoted by p ij and marginal 

probabilities by pi.and p.j. Table 1 and 2 depict observed values and marginal probabilities respectively. 

 

Table 1. Structure of 2x2 table showing observed frequencies and marginal totals. 

A B 1 2 ∑ 

1 n11 n12 n1. 

2 n21 n22 n2. 

∑ n.1 n.2 N 

 

Table 2.Theoretical Probabilities of a Contingency Table 

A B 1 2 ∑ 

1 p11 p12 p1. 

2 p21 p22 p2. 

∑ p.1 p.2 1 

 

Our interest in RR is to find the misclassification probabilities. The marginal probabilities p i.and p.j are the 

unconditional probabilities of belonging to category i of attribute A and category j of attribute B respectively. Van 

den Hout et al., (2010) states that RR is a misclassification design, which is used in survey sampling, when sensitive 

questions are asked. The randomized response data may be described as misclassified data (Shair & Majeed, 2020). 

“The purpose of classification is to arrange observations into two or more labeled classes. The emphasis is on deriving 

a rule that can be used to optimally assign new objects to the labeled classes”.(Johnson and Wichern, 2006). Fujisawa 

and Tahata (2022)  have worked on finding quasi association models for  square contingency tables. Ko and Kim 

(2016) proposed a study to recognize misclassification objects in discriminant model. Ngailo and Ngaruye (2022), 

Ngailo and Chuma (2022) and Egleston et al., (2011) has done work on approximations and calculations of 

misclassification probabilities under different scenarios.  

3.2. Misclassification 

A good classification procedure also results in few misclassifications or we may say that probabilities of 

misclassification should be small if a good classification procedure is applied. The chances of misclassification are 

always there especially, in case of randomized response techniques. Randomized response variables can be considered 

as misclassified categorical variables where conditional misclassifications probabilities are known, so we may say 

that randomized response is a misclassification design that is used in sample surveys of sensitive issues. 

Misclassification in survey is included by the interviewee but interviewer specifies conditional misclassification 

probabilities. Misclassification occurs, if observed category i is while true category is j for i≠j. The primary thought 

behind randomized response is unsettling influence made by misclassification design, which is utilized to safeguard 

the privacy of respondents. A general randomized response design Van den Hout et al., (2010) is given as  

= P
  

      (1) 

Where 1 2 = ( ) , ,..., k   is a vector of probabilities of observed responses, 1 2= ( , ,..., ) k   is the vector of 

probabilities of the true response with categories 1, 2, 3,…, k and P
 
is the kxk transition matrix containing conditional 

misclassification probabilities. The RR transition matrix contains misclassification probabilities pij. 

3.3. Conditional misclassification probabilities  

Let the random variable Y denote true status and Y* denote the observed status where Y and Y* have the same set of 

categories {1, 2, 3, …, k}. Let P  denote the KxK nonsingular transition matrix  

*(  =  | )klp P Y k Y l= =
       (2)

 

for all {1,  2,  3,...,  }k k . In multivariate design the transition matrix kP  can be obtained by taking Kronecker 

product of uni-variate transition matrices. Let
* *( = )k P Y k =  and ( = )k P Y k = for all {1,  2,  3,...,  }k k . 

So the general randomized response model in matrix notation by Van den Hout et al., (2002) is as under 

*
=π P

        (3) 

Where π and π are vectors of true and observed response probabilities and kP  is the matrix of misclassification 

probabilities. It is very advantageous to use matrix notation in a multivariate RR design. If the misclassification of Y1 
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is described by
1YP and the misclassification of Y2 is described by

2
YP  the misclassification of the cartesian product

1 2( , )Y Y=Y is described by 

1 2
  Y Y= P P P

       (4) 

 Where   denotes the Kronecker product. One thing is to be noted in RR transition matrix that columns or rows of 

the matrix add up to 1. In case of RRT for a binary variable, if we consider Y and Y* as true and observed answer (1 

= yes, 2 = no) respectively, then misclassification probabilities according to above defined conditional 

misclassification probabilities become as 
*

11 (1|1) (  = 1 | 1)p P P Y Y= = =
      (5) 

*

12 (1| 2) (  = 1 | 2)p P P Y Y= = =
      (6) 

*

21 (2 |1) (  = 2 | 1)p P P Y Y= = =
      (7) 

*

22 (2 | 2) (  = 2 | 2).p P P Y Y= = =
      (8) 

The transition matrix of conditional misclassification probabilities is given by: 

11 12

21 22

           
.

          

p p

p p

 
=  
 

P

        

(9) 

Next we work on acquiring the transition matrix of conditional misclassification probabilities for different RRT’s. 

 

4. Misclassification Probabilities for few RRT’s 

4.1. Misclassification Probabilities for Warner (1965) RRT 

Warner (1965) is the pioneer, who introduced RRT to deal with sensitive attribute. The randomization device used by 

Warner (1965) is spinner having two statements of belonging to Group A or B, where A is the group f sensitive 

attribute. In a sample of size n, each respondent has to answer the sensitive question using specified randomized 

response device. In randomized response a privacy protection atmosphere is created in such a way that respondent 

only answers in a yes or no depending on his status of possessing sensitive attribution. Probability of yes and no 

response by Warner (1965) are as under: 

( 1) (1 )(1 ), 1 2P Y p p p = = + − − 
     

(10) 

We know that conditional probability is defined by: 

( )
( | ) .

( )

P A B
P A B

P B


=          (11) 

So by using equation (11) we find conditional misclassification probabilities for Warner (1965) RRT as under: 

11

p
p




=

       

 

11p p=
         

12

(1 )(1 )

(1 )

p
p





− −
=

−        

12 1p p= −
        

21

(1 )p
p





−
=

     

  

21 1p p= −
        

22

(1 )

(1 )

p
p





−
=

−         

22 .p p=
         Finally the transition matrix of conditional misclassification probabilities for Warner (1965) RRT is derived as under: 

 

.w

p  1- p

 1- p p 

 
=  
 

P

       (12) 

4.2. Misclassification Probabilities for Mangat and Singh (1990) RRT 

In the proposed RRT by Mangat and Singh (1990) a new randomizing device is introduced by utilizing two 

randomizing devices named R1 and R2. They discussed a model for two cases when respondents are making truthful 
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reporting and less than truthful reporting. They used sample of size n without replacement and individuals are used to 

use R1 having two statements of belonging to sensitive group A or Go to R2, with probabilities T and 1-T respectively. 

The R2 also includes two statements of belonging to or not belonging to sensitive Group A, with probabilities p and 

1-p. Here R2 is same like Warner (1965) RRT. The probability of a yes response is 

( ) ( )( ) ( ) 1 1 1 .P yes T T p p  = + − + − −

    
(13)

 
Now we find conditional misclassification probabilities for Mangat and Singh (1990) RRT as under  

11

(1 )T T p
p

 

 

−
= +

   

11 (1 )p T T p= + −
       

 

12

(1 )(1 )(1 )

(1 )

p T
p





− − −
=

−

    12 (1 )(1 )p p T= − −
      

 

21

(1 )(1 )p T
p





− −
=

       21 (1 )(1 )p p T= − −
 

  

22

(1 ) (1 )(1 )

(1 ) (1 )

T p T
p

 

 

− − −
= +

− −     

22 (1 ) .p T T p= + −
  

 
Finally the transition matrix of conditional misclassification probabilities for Mangat and Singh (1990) RRT is 

 (1 ) (1 )(1 )
.

(1 )(1 ) (1 )
ms

T T p p T

p T T T p

+ − − − 
=  

− − + − 
P

.    

(14)

 

4.3. Misclassification Probabilities for Mangat (1994) RRT 

Mangat (1994) has pointed that two stage randomized response technique used by Mangat and Singh (1990) can be a 

bit confusing for the respondents while reporting. So to solve this issue, Mangat (1994) proposed a simpler technique. 

In proposed technique respondents in a sample size n are advised to use the same Warner’s (1965) randomized device 

having belonging and non-belonging to group A with ‘p’ and ‘1- p’ probabilities respectively and they have to answer 

‘yes’ or ‘no’ according to outcomes of randomized device and actual status which they posses. The probability of a 

‘yes’ response for Mangat (1994) RRT is given as under: 

( )( )( ) 1 1 .m mp yes p = + − −

  
   (15)   

We obtain conditional misclassification probabilities for Mangat (1994) RRT as under: 

11

(1)
p




=

        

  

11 1p =
        

  

12

(1 )(1 )

1

p
p





− −
=

−

      

 

11 (1 )p p= −
        

21

0
p


=

        

  

21 0p =
        

  

22

(1 )

(1 )

p
p





−
=

−

       

  

22 .p p=
        

  
Finally the transition matrix of conditional misclassification probabilities for Mangat (1994) RRT is 

1 1
.

0
m

p

p

− 
=  
 

P

       (16)
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4.4. Misclassification Probabilities for Corstange (2004) RRT 

Corstange (2004) proposed a new RRT and used hidden logit estimation procedure. In the RRT proposed by Corstange 

(2004) the respondent is instructed to toss a coin if head appears, he/she is requested to report ‘yes’ unreservedly, but 

if tail appears they have to answer a yes/no question. If   is the probability of unconditional ‘yes’ and ‘p’ is the true 

proportion of respondents saying ‘yes’, then the probability of a ‘yes’ response is given as: 

( )( ) 1p yes p = + −
      (17) 

For the derivation purpose of conditional misclassification probabilities, we will interchange  with π, so the 

probability of a ‘yes’ response is given as: 

( )( ) 1p yes p = + −
      (18) 

Using conditional probability formula, we find conditional misclassification probabilities for Corstange (2004) RRT 

as under: 

(1)
(1|1)P




=

          
(1|1) 1P =

          
(1 )

(1| 2)
1

p
P





−
=

−          
(1| 2)P p=

          
0

(2 |1)P


=
          

(2 |1) 0P =
 

(1 )(1 )
(2 | 2)

(1 )

p
P





− −
=

−
        

(2 | 2) 1P p= −
        

The transition matrix of conditional misclassification probabilities for Corstange (2004) RRT is given by:

 1
.

0 1
c

p

p

 
=  

− 
P

       (19)    

4.5. Misclassification Probabilities for Huang (2004) RRT 

Huang (2004) introduced a straightforward survey method that could be used to estimate the sensitivity of survey 

questions. His suggested method can also be used to calculate the probability that a respondent will honestly state that 

they have a sensitive characteristic even in the case of a direct response survey. Taking a simple random sample of 

size n with replacement, in response to a direct question, the respondent must state whether or not they belong to the 

sensitive group A. If the respondent selects "no," he or she is given a randomization device with two statements of 

belonging or not belonging to a sensitive group with p and 1-p probabilities respectively (Shair & Anwar, 2023). No 

matter if a direct response process is used, the respondent has no motivation to tell a lie because they are a member 

of an innocent group. In this instance, it is presumptive that respondents in the sensitive group will react in full candor 

using the RRT, but with probability T and the customary direct response procedure. 

Using the proposed technique, the probability of a ‘yes’ response in the direct response procedure is 

( )p yes T=
       (20) 

The probability of a ‘yes’ response in the RR procedure is given as: 

( ) (1 ) (1 )(1 )p yes p T p = − + − −
    (21) 

Next we find conditional misclassification probabilities for Huang (2005) RRT as under: 

(1 )
(1|1)

p T
P





−
=

  
(1|1)P p pT= −

         
(1 )(1 )

(1| 2)
(1 )

p
P





− −
=

−
        

(1| 2) (1 )P p= −
         

{(1 ) }
(2 |1)

p pT
P





− +
=

        
(2 |1) 1P p pT= − +

         



Halim et al…. 

432 

(1 )
(2 | 2)

(1 )

p
P





−
=

−
         

(2 | 2)P p=
          

Finally the transition matrix of conditional misclassification probabilities for Huang (2004) RRT is given by

 1

1
h

p pT p

p pT p

− − 
=  

− + 
P

       (22) 

Next we use these derived transition matrices of conditional misclassification probabilities to get perturbed data and 

then Chi-square test of independence between two variables, is carried out, where variables are subject to 

misclassification due to RR.  

 

5. Chi-Square Test of Independence 

The current section examines testing independence between the two variables, when one or both categorical variables 

may be misclassified as a result of a RR design. We know the cross-tabulation of the variables A and B from above 

section. Let ( , )ijp P A i B j= = = for each   {1,  2,  ..,  }.i J and   {1,  2,  ..,  }.j J The data is assumed to 

be distributed multinomially. The null hypothesis of independence is 
0 : ij i jH p p p+ += , where the plus sign 

denotes summation over the related index, e.g., 
1 2 ...i i i ijp p p p+ = + + +  

5.1. Materials 

We take into account the 2x2 table with two cross-classified variables from research into breaking regulations of social 

benefit (Van Gils et al. 2001), when estimating the chi-square test of independence. The variables Y1 and Y2 stand for 

gender and fraud, respectively. The question is, whether the respondents made money from odd jobs without alerting 

the office that gives their social benefit. Here Y 1  denotes sex (men=1, women= 2) andY 2  denotes the latent status 

as to whether or not the respondent committed fraud (y e s =  1, n o =  2). Data is considered to be calculated 

from direct question. Counts are given by 
* * * * *

11 12 21 22

*

 ( , , , )

(218,  500,152,  438)

t

t

y y y y=

=

y

y
       (23) 

 

Table 3. Classification by Gender (Y1) and Fraud (Y2) 

Y1 
Y2

  

Yes No Totals 

Male 218 500 718 

Female 152 438 590 

Totals 370 938 1308 

 

Consider Table 3, without misclassification, to apply Chi-Square test, the expected frequencies in the (i,j) cell under 

H0 are estimated by ,
i j

ij

n n
m

n

+ +
= where 

ijn denotes the observed frequencies in the (i,j) cell of the cross-tabulation 

of A and B, and n is the sample size. The usual chi-square test of independence can be used on the observed table 

when one or two variables are incorrectly classified and the misclassification is non-differential and independent. 

Therefore, by using the chi-square test on the observed cross-classification of A* and B*, it is possible to draw 

conclusions about the independence between A and B when the misclassification is caused by RR. When the Chi-

Square test is run on the data in Table 3, it yields 2 = 3.377 with 1 degree of freedom (DF) and p-value as 0.066. 

When we choose a significance level of α = 0.05, the data do not give a reason to reject the null hypothesis hence we 

conclude that variables are independent. 

5.2. Chi-square test of independence on misclassified data for Warner (1965) RRT 

Now taking the misclassification probabilities of different RRT’s as calculated in section 4, we calculate Chi-Square 

and then check effect of Chi-Square test of independence on perturbed data due to RR design. We get the 

misclassified (perturbed) data in our calculation, using relationship given as under by Van den Hout et al., 

(2010): 
-1 *

P  =y y
         

(24) 

We use the transition matrix of conditional misclassification probabilities for Warner (1965) RRT, for different values 

of p from 0.1-0 .9 to get perturbed or misclassified data using equation (24). Then Chi-Square test of independence is 

applied on misclassified data. The results are shown in Table 4. 
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Table 4. Chi-square test for Warner (1965) RRT 

 

This table shows chi-square and p-values of misclassified data taking p = 0.1 - 0.9 with 1 DF. We can see that this 

table is symmetric around 0.5 and notice that as p increases and tends to 1, the chi square value decreases and move 

towards original value of chi square. The data gives us a reason to reject the null hypothesis, when we choose a 

significance level of 0.05 as we can see that p-values are less than 0.05, indicating that the variables are dependent. 

Chi- square cannot be calculated for p = 0.5 as the transition matrix of conditional misclassification probabilities for 

Warner (1965) RRT becomes singular, so perturbed data cannot be calculated. Considering p = 1, the matrix of 

conditional misclassification probabilities yield in identity matrix so we get same value of chi-square as original. 

5.3. Chi-Square Test of Independence on misclassified data for Mangat and Singh (1990) RRT 

We use the transition matrix of conditional misclassification probabilities for Mangat and Singh (1990) RRT, for 

different combinations of p and T from 0.1-0.9 to get perturbed or misclassified data using relation (24). Then Chi-

Square test of independence is applied on misclassified data. 

We can notice that Table 5 is a symmetric table. This table shows chi-square and p-values of misclassified data taking 

combinational values of p and T from 0.1-0.9 with 1 DF. Values in “*” show that misclassified data using transition 

matrix of conditional misclassification probabilities for Mangat (1990) RRT yields in negative counts and chi-square 

cannot be calculated. We can notice that as p and T increase and tend to 1, the chi square values decrease and move 

towards original value of chi square. When we choose a significance level of α = 0.05 then we reject the null 

hypothesis of independence, as p-values is less than α, for all combinational values of p and T less than or equals to 

0.8. Hence we conclude that variables are found to be dependent. Important values to be noted in this table are for 

taking combinations of T and p as 0.8, 0.9 which yields chi square equals to 3.6678 with 1 DF and p-values as 0.0555. 

Lastly taking T and p as 0.9 yields which yields chi square equals to 3.5142 with 1 DF and p-values as with 1 DF and 

p-values as 0.0607. When we choose a significance level of α = 0.05 then we do not have enough strong reason to 

reject the null hypothesis, so variables are found to be independent. Hence we may say that for values of p and T 

which are greater than or equals to 0.8, variables are independent or we may say that data is accurately classified. 

Considering p and T = 1, the matrix of conditional misclassification probabilities yields in identity matrix so we get 

same value of chi-square as original 

5.4. Chi-square test of independence on misclassified data for Mangat (1994) RRT 

We use the transition matrix of conditional misclassification probabilities for Mangat (1994) RRT for different values 

of p from 0.1 - 0.9 to get perturbed or misclassified data using relation (24). Finally chi-square test of independence 

is applied on misclassified data. 

Table 6 shows chi-square and p-values of misclassified data taking p = 0.5 - 0.9 with 1 DF. As p increases and tends 

to 1, the chi square value decreases and move towards original value of chi square. The table gives us a reason to 

reject the null hypothesis of independence, when we choose a significance level of 0.05 as we can see that p-values 

are less than 0.05, indicating that the variables are dependent. Chi-square cannot be calculated for p = 0.1 – 0.4 as the 

transition matrix of conditional misclassification probabilities for Mangat and Singh (1994) RRT yields in negative 

counts. Considering p = 1, the matrix of conditional misclassification probabilities yield in identity matrix so we get 

same value of chi-square as original. 

5.5. Chi-Square Test of Independence on misclassified data for Corstange (2004) RRT 

We use the transition matrix of conditional misclassification probabilities for Corstange (2004) RRT, for different 

values of p from 0.1 - 0.9 to get perturbed or misclassified data using relation (24). After getting misclassified data, 

chi-square test of independence is applied in table 7. 

Table 7 depicts chi-square and p-values of misclassified data taking p = 0.1 - 0.5 with 1 DF. As p decreases and tends 

to 0, the chi square value also decreases and move towards original value of chi square. The data gives us a reason to 

reject the null hypothesis, when we choose a significance level of 0.05 as we can see that p-values are less than 0.05, 

indicating that the variables are dependent. Chi-square cannot be calculated for p = 0.6 – 0.9 as the transition matrix 

of conditional misclassification probabilities for Corstange (2004) RRT yields in negative counts. Considering p = 1, 

the matrix of conditional misclassification probabilities yields in symmetric matrix so we cannot get perturbed or 

misclassified data. Considering p = 0, the matrix of conditional misclassification probabilities yield in identity matrix 

so we get same value of chi-square as original. Graphical comparison of 2 values is shown in figure 1 against different 

values of p, where we can clearly see that Corstange (2004) and Mangat (1994) has totally opposite behavior. 

 

 

P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

2 5.3061 9.5458 22.2376 109.95 * 109.95 22.2376 9.5458 5.3061 

P-Value 0.0213 0.002 0.000 0.000 * 0.000 0.000 0.002 0.0213 
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Table 5. Chi-Square Test for Mangat and Singh (1990) RRT 

T  
P 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 
2 8.9244 18.1773 57.6500 * * 48.6034 16.5578 8.3622 5.0467 

P-Value 0.0028 0.0000 0.0000 * * 0.0000 0.0000 0.0038 0.0247 

0.2 
2 18.1773 48.6034 * * 109.947 27.8700 12.8250 7.3871 4.8060 

P-Value 0.0000 0.0000 * * 0.0000 0.0000 0.0003 0.0066 0.0284 

0.3 
2 57.6500 * * * 41.5930 18.1774 10.2351 6.5741 4.5821 

P-Value 0.0000 * * * 0.0000 0.0000 0.0014 0.0104 0.0323 

0.4 
2 * * * 48.6034 22.2376 12.8250 8.3622 5.8890 4.3851 

P-Value * * * 0.0000 0.0000 0.0003 0.0038 0.0152 0.0363 

0.5 
2 * 109.9497 41.5930 22.2376 13.9132 9.5458 6.9627 5.3061 4.1791 

P-Value * 0.0000 0.0000 0.0000 0.0002 0.0020 0.0083 0.0213 0.0409 

0.6 
2 48.6034 27.8700 18.1774 12.8250 9.5458 7.3871 5.8890 4.8060 3.9973 

P-Value 0.0000 0.0000 0.0000 0.0003 0.0020 0.0066 0.0152 0.0284 0.04557 

0.7 
2 16.5578 12.8250 10.2351 8.3622 6.9627 5.8890 5.0467 4.3851 3.8272 

P-Value 0.0000 0.0003 0.0014 0.0038 0.0083 0.0152 0.0247 0.0363 0.0504 

0.8 
2 8.3622 7.3871 6.5741 5.8890 5.3061 4.8060 4.3851 3.9973 3.6678 

P-Value 0.0038 0.0066 0.0104 0.0152 0.0213 0.0284 0.0363 0.0456 0.0555 

0.9 
2 5.0467 4.8060 4.5821 4.3851 4.1791 3.9973 3.8272 3.6677 3.5181 

P-Value 0.0247 0.0284 0.0323 0.0363 0.0409 0.0456 0.0504 0.0555 0.0607 

 



Halim et al…. 

435 

 

Table 6. Chi-square test for Mangat (1994) RRT 

P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

2 
* * * * 

37.8902 12.4485 7.4477 5.3133 4.1297 

P-Value * * * * 0.0000 0.0004 0.0064 0.0212 0.0421 

 

Table 7. Chi-square test for Corstange (2004) RRT 

P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

2 4.1297 5.3133 7.4477 12.4485 37.8902 
* * * * 

P-Value 0.0421 0.0212 0.0064 0.0004 0.0000 
* * * * 

 

 

 
Figure 1: Comparison of χ2 against different values of p 

 

5.6. Chi-Square Test of Independence on misclassified data for Huang (2004) RRT 

We use the transition matrix of conditional misclassification probabilities for Huang (2004) RRT for different 

combinations of p and T from 0.1-0.9 to get perturbed or misclassified data using relation (24). Then Chi-Square test 

of independence is applied on misclassified data. The results are shown in Table 8. We can notice that Table 8 is not 

a symmetric table. This table shows chi-square and p-values of misclassified data taking combinational values of p 

and T from 0.1-0.9 with 1 DF. Values in “*” show that misclassified data using transition matrix of conditional 

misclassification probabilities for Huang (2004) RRT yields in negative counts and chi-square cannot be calculated. 

We can notice that when p is higher and T is lower p so the chi square values decrease and move towards original 

value of chi square and vice versa. When we choose a significance level as 0.05 then we reject the null hypothesis, as 

p-values is less than α, for all combinational values of p and T. Hence we conclude that variables are found to be 

dependent. Taking T and p above 0.5 gives negative counts of misclassified data. Hence chi-square cannot be 

calculated. Important values to be noted in this table are for taking all values of T and p = 0.1, where highest value of 

T yields chi square equals to 4.42 with 1 DF and p-value as 0.0355, which is near to the original value of chi square. 

But the data gives us a reason to reject the null hypothesis, when we choose a significance level of 0.05 as we can see 

that p-values are less than 0.05, indicating that the variables are dependent. Taking into consideration p = 1 and T = 

0, the matrix of conditional misclassification probabilities yields in identity matrix so we get same value of chi-square 

as original. 
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Table 8. Chi-Square Test for Huang (2004) RRT 

T  P 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 2 5.1904 9.0283 19.8459 86.6713 * * 41.4386 14.0098 7.1352 

P-Value 0.0227 0.0027 0.0000 0.0000 * * 0.0000 0.0002 0.0076 

0.2 2 5.0797 8.5640 17.9186 71.5275 * * * 26.3166 10.8891 

P-Value 0.0242 0.0034 0.0000 0.0000 * * * 0.0000 0.0010 

0.3 2 4.9737 8.1452 16.3326 60.8887 * * * * 22.9775 

P-Value 0.0257 0.0043 0.0001 0.0000 * * * * 0.0000 

0.4 2 4.8720 7.7654 15.0045 53.0048 * 12.8250 8.3622 * * 

P-Value 0.0273 0.0053 0.0001 0.0000 * 0.0003 0.0038 * * 

0.5 2 4.7743 7.4194 13.8761 46.9286 * * * * * 

P-Value 0.0289 0.0065 0.0002 0.0000 * * * * * 

0.6 2 4.6805 7.1030 12.9056 42.1021 * * * * * 

P-Value 0.0305 0.0077 0.0003 0.0000 * * * * * 

0.7 2 4.5903 6.8124 12.0620 38.1759 * * * * * 

P-Value 0.0322 0.0091 0.0005 0.0000 * * * * * 

0.8 2 4.5035 6.5447 11.3219 34.9195 * * * * * 

P-Value 0.0338 0.0105 0.0008 0.0000 * * * * * 

0.9 2 4.4200 6.2972 10.6673 32.1749 * * * * * 

P-Value 0.0355 0.0121 0.0011 0.0000 * * * * * 
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6. Conclusions and Recommendations   

We may observe that Mangat (1994) and Corstange (2004) RRT have opposite behavior in terms of their chi-square 

values but Warner (1965) shows a symmetric behavior around 0.5. Finally we may say that chi-square can be 

calculated for perturbed data taking misclassification probabilities as 0.1- 0.9. From 0.8 or higher shows that data is 

accurately classified, so chi-square can be calculated easily. Finally we may say that chi-square can be calculated for 

perturbed data taking misclassification probability as p = 0.8 or higher in all RRT’s except Corstange (2004). In case 

of Mangat and Singh (1990) chi-square can be calculated for all values of p and for T = 0.8 but for p = 0.8 gives chi-

square value near to the value for the original data which is irrespective of misclassification. So as a comparative 

statement we may say that Mangat and Singh (1990)is fund to be efficient in results. We may conclude that when the 

data is misclassified, the results of different estimates are altered. Chi-square test of independence calculated for 

perturbed data shows that variables are dependent but for original data, variables were independent. We can conclude 

that misclassification can change the status of dependence in the data. We recommend that misclassification 

probabilities of further RR models can be derived using the same methodology given in the current work. Furthermore 

the derived matrices of conditional misclassification probabilities can be used acquire estimates of log-linear model 

for numerous randomized response techniques.  
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