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Abstract 

The survey sampling is one of the driving and most extensively used technique to collect the data about individual’s 

behaviors, beliefs, views and opinions on a certain matter or topic. We aim to acquire flawless and reliable responses while 

collecting data.  This aim is not achieved in such cases, when we are dealing with sensitive or socially stigmatized variables. 

Frequently respondents give elusive or false or non-responses about sensitive questions. In such sensitive or stigmatized 

characteristics, we use randomized response techniques (RRT). In current article using Mangat and Singh (1990) 

randomized response model, a modified hidden logit estimation procedure is presented. The proposed logit estimation 

procedure is also compared with ordinary logits and Corstange (2004) randomized response model. We detect that modified 

hidden logit estimates for Mangat and Singh (1990) are closer to the true parametric values as compare to the higher values 

of p and T and show elevated precision. The akaike and schwarz information criterion are renowned measures to model 

selection that favors more parsimonious models over more complex models. This study is also conducted for checking best 

model selection. This paper has a great contribution towards application and estimation of logistic models when sensitive or 

stigmatized issues are under consideration.  
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1. Introduction 

1.1. Survey Sampling  

Survey sampling is broadly used procedure in different public or private sectors for data collection. The data collection is 

the main step in Survey Sampling. Data is collected regarding certain characteristic of population which can be qualitative 

or quantitative in nature. Important point to be noted is that the main thing we aspire in data collection is to get accurate, 

consistent and reliable results. To get reliable or accurate findings is not a problem when we are working on common or 

general topics but it becomes thorny to get hold of true responses when we are bearing some personal issues for survey, in 

mind. If our characteristic of interest is the presence or absence of socially undesirable characteristic then respondent wants 

to keep privacy and is always unwilling to share his/her personal information. Such a variable or characteristic is considered 

as sensitive or stigmatized. When survey consists of highly private and personal questions, the respondents feel reluctant to 

provide accurate information and our survey yields erroneous, incorrect and fuzzy results. 

In Survey Sampling, it is obvious that there arises a bias, while we are dealing with sensitive variables. This type of bias is 

particularly referred as Social Desirability Bias (SDB) when variable of interest makes respondents socially stigmatized. 

SDB is stated as a bias which arises when respondent conceals or hides the true response of a sensitive or highly 

controversial issue due to the fear that if he/she discloses the right information so that make him/her socially undesirable or 

stigmatized. Sensitive issues can be like frauds, use of illegal drugs or alcoholic beverages, extra marital affairs, illegal 

income, evading income tax and a savings in forms of prize bonds. In such cases we require a better technique for truthful 

data collection, where respondent feel confident in reporting his answers. In such cases most widely used technique is 

randomized response. 

1.2. Randomized Response (RR) 

It is clear from all above examples and discussions that direct questioning technique for obtaining information regarding 

sensitive issues will end us up into inaccurate and false results and sometimes we have on-responses. For the above 

discussed example of sensitive issues, the direct questioning technique will be totally useless because in all these cases 

respondents will be reluctant to provide accurate information regarding specific sensitive issues due to fear of being 

penalized by authority or fear of being socially stigmatized. So, finally respondent either refuse to answer or provide 

intentionally false answer, which results in biased estimates. To reduce this response bias, there should be some other 

survey methodology which has the strong potential to handle these sensitive variables.  

We know that the possession of sensitive attribute results in biased and inaccurate results and our usual survey methods 

which are applied in case of un-harmful / innocuous questions are not appropriate to apply in case of sensitive issues and if 

applied then there is a great chance of un-true results. So, it was desired to find some other methods that raise the true 

response rate and reduce the response bias. To satisfy this need analysts chipped away at finding some strategy, which will 

be effectively managing sensitive issues. Perhaps the most popular strategy among these techniques is randomized response 

technique. Randomized response (RR) is a survey technique used to gather information about sensitive issues and the aim is 

to protect the privacy of respondent, which in result reduce non-response or intentionally misreporting. More formally it can 
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be defined as a technique which reduces the response error in survey of sensitive issues by providing respondents foolproof 

guarantees of anonymity. 

Warner (1965) is pioneer, who introduced RR procedure to deal with sensitive variables. He introduced this technique to 

find the proportion of sensitive/ socially stigmatized variables. This technique is very useful to reduce Social Desirability 

Response Bias (SDB) or evasive answer bias up to great degree. At one end it can be useful to enhance the cooperation 

between interviewer and interviewee to work together and at other end, to keep up privacy and confidentiality level of 

interviewee. 

A major measure of improvements and variations of Warner's RRT have been suggested by various investigators. 

Greenberg et al., (1969), Mangat and Singh (1990), Mangat (1994), Mahmood et al., (1998), Christofides (2003), Kim and 

Warde (2004) and Singh and Tarray (2014) are some of the many to be cited. Narjis and Shabbir (2021) presented another 

two-stage RRT model to find the commonness of sensitive characteristic. The utility of presented two-stage RR model 

under stratification is likewise investigated. Hsieh et al., (2022) presented an odd model for two-stage RR data and applied 

inverse probability weighting and various other strategies to manage covariates regarding missing values. Singh and Singh 

(2021) and Singh et al., (2022) presented their work on using negative binomial and Poisson distribution as a randomization 

device. 

1.3. Logistic Regression 

While working with regression models, we have the exceptionally realize as a primary concern to obtain the values of 

parameter of the concerned model. For this specific motivation behind assessment of parameters, we have numerous 

techniques like maximum likelihood (ML), ordinary least squares (OLS), and Generalized least square (GLS). The OLS is 

an integral technique when factors are continuous, yet in the dichotomous variable, OLS isn't suitable. Where in all 

dichotomous variable scenarios, the responses are either in 'yes' or ‘no’ (Shair & Majeed, 2020). One procedure to assess 

these sorts of issues is logistic technique. Logistic Regression has been used in many research areas especially in different 

fields of Psychological or Behavioral studies, like Exercise and Sports studies (Capel (1986)), Pediatric Psychology 

(Friedrich et al. (1986)), Psychopathology (Clark and Beck (1991)), Community Psychology (Hedeker et al. (1994)), 

Human Genetics (Waldman et al. 1999) and many others. In such studies, the response variable is more likely to be 

sensitive (Shair et al. 2022). 

  

1.4. Logit Estimation in RR 

We have discussed that logistic regression is applied in case binary variables but when our response dichotomous variable is 

related to any of the sensitive characteristics, ordinary logit technique is not good to apt. Corstange (2004, 2009) proposed a 

procedure, known as hidden logit for the estimation of parameters in case of sensitive or socially stigmatized variables. 

Hidden logit model is modified form of ordinary logit and hold-back the effect of randomizing device (Shair & Anwar, 

2023). The hidden procedure is to model the true probability of yes answer π as a function of some explanatory variables X. 

In ordinary logits we know that odd ratio is:  

ln
1

X





 
= 

−          (1) 

Generally, if π is the probability of a “yes” response, so we will solve our model for π and replace it in ordinary logits. 

Finally, the hidden logit model can be obtained in terms of X and β. Here values of β are the population parameters and we 

have to estimate them. Using same equation, we can find parameters of interest and then the logits by ML procedure by 

setting the derivatives of the likelihood function equal to zero. The RR model employed by Corstange (2004 & 2009) is as 

following: The respondent is asked to toss a coin if head appears, he/she is requested to report ‘yes’ irrespective of his 

actual status, but if tail appears they have to answer a yes/no question. If   is the probability of unconditional ‘yes’ and p is 

the true proportion of respondent saying ‘yes’, then the probability of a ‘yes’ response is given as: 

( )( ) 1p yes p  = = + −
      (2) 

For the derivation purpose modified hidden logits, we will interchange 
 
with , so the probability of a ‘yes’ response is 

given as: 

( )( ) 1p y p  = = + −   (2) 

Solving (2) for the value of π 

1

p

p




−
=

−
         (3) 

Now replacing value of π in ordinary logits (1) and solving for θ. 
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We can see that above equation becomes the ordinary logits derived from direct responses for p = 0. Consider a binary 

variable ‘
iy ’ which takes value ‘1’ showing ‘yes’ response and value ‘0’ showing ‘no’ response, with probabilities θi and 1 

-θi  respectively. Then the likelihood function of β given 
iy  is: 

1

1

( ) (1 )i i

n
y y

i i i
i

L y   −

=

=  −
,     
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i i i i i
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The first derivative of this likelihood function w.r.to   is done as under 
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Replacing values of 

i






 and θ in (6) 
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By taking first derivative equivalent to 0, maximizes the function, yet its answer can't be acquire analytically, so we solve 

this expression numerically. Hussain and Shabbir (2008) utilized Warner (1965) RRT to measure the hidden logits. Hussain 

et al., (2011) utilized the Mangat (1994) RRT to measure the improved logits using Corstange (2004) methodology and it is 

compared with Hussain and Shabbir (2008) logit estimation at equal privacy protection. Cruff et al., (2016) projected a 

review of different regression methods for RR data in handbook of Statistics.  Chang et al., (2021) also applied logistic 

regression to explore the effects of covariates on a stigmatized characteristic for the two-stage RRT of Huang (2004). Hsieh 

and Perri (2020) proposed a few theoretical and observational advances by providing the strategy for analyzing the elements 

that impact two stigmatized variates, when information is gathered by RRT.  

 

2. Proposed methodology 

2.1. Modified hidden logit using Mangat and Singh (1990) RRT 

Mangat and Singh (1990) have anticipated a new randomizing technique and they have utilized two randomizing devices 

named R1 and R2. They examined a model when respondents are making honest revealing utilizing two stage RR. 

Researchers have then expanded this technique when there is not exactly honest revealing at respondent side. They utilized 

a sample of size n without replacement and people are asked to utilize R1 having following proclamations like: or go to R2, 

addressed with probabilities T and 1-T respectively. The R2 containing following explanations like: I belong to sensitive 

group A, or I don't belong to sensitive group A, addressed with probabilities p and 1-p. Here for R1 respondent should 

answer ‘yes’ or ‘no’ as indicated by proclamation and the genuine status he has. R2 is same like Warner (1965) RRT. The 

likelihood of a ‘yes’ response is then given by 

( ) ( )( ) ( ) 1 1 1 .P yes T T p p   = = + − + − −
    

(9) 

Solving (9) for π
 

( )( )(1 ) (1 ) 1 1T T p T p   = + − + − − −
 

( ) ( )[ (1 ) (1 ) 1 ] (1 ) 1T T p T p T p = + − − − − + − − ( )(1 ) 1 [ {1 }]T p T p pT T p pT − − − = + − − − − +

 ( )(1 ) 1 [2 2 2 1]T p T p pT − − − = + − −
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Now replacing value of π in ordinary logits (1) and solving for θ 

( ) ( )(1 ) 1 (1 ) 1
ln 1

2 2 2 1 2 2 2 1
i

T p T p
X

T p pT T p pT

 


− − − − − − 
− = 

+ − − + − − 

 

( )(1 ) 1 2 2 2 1 1
ln

2 2 2 1 2 2 2 1
i

T p T p pT T p pT
X

T p pT T p pT

 


− − − + − − − + − − +
= 

+ − − + − − 

( )(1 ) 1
ln

2 2 2 1 2 2 2 1
i

T p T p pT
X

T p pT T p pT

 


− − − + − −
= 

+ − − + − −   
 

( )(1 ) 1 ( ) i iX X
T p T p pT e e

  − − − = + − −
 

( )(1 ) ( ) (1 ) 1i iX X
e T p pT e T p

  + = + − + − −  

( )( ) (1 ) 1

(1 )

i

i

X

X

T p pT e T p

e






+ − + − −
=

+
      (11) 

For p =1, and T = 1, equation (11) becomes the ordinary logits resulting from direct responses. Using the likelihood function 

of β given
iy , the first derivative of likelihood function w.r.to β is shown as under: 
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By taking first derivative equivalent to 0, maximizes the function, yet its answer can't be acquire analytically, so we solve 

this expression numerically. 

2.2. Material 

We have used the 'Eviews' programming software for all the numerical analysis. Monte carlo simulations are done using 

Gauss-Newton method and for every p from 0.1- 0.9, and odd values of T, samples of sizes 1000 are generated from a three 

regressors equation with no constant term. Uniform distribution is used for generation of samples of size 1000 for Xi variate. 

For simplicity, we can say that logit estimation is performed taking starting values of β= (0, 1, 1, 1) and each Xi is following 

uniform distribution with parameter -3 and 3. Through this simulation we find estimates of β’s (b’s), their standard errors 

(s.e) and AIC/SIC for Corstange (2004) and Mangt and Singh (1994) for different values of p and T
 

3. Results and Discussions 

3.1. Estimates of β’s (b’s), s.e(b’s) and AIC/SIC for Corstange (2004) RRT.  

 

Table 1: Estimates of β’s (b’s) for different values of p 

b’s/p b0 b1 b2 b3 

0 -0.16888 1.138353 1.06685 1.10611 

0.1 -0.16281 1.164716 1.02763 1.0995 

0.2 -0.14621 1.074617 0.97167 1.05347 

0.3 -0.30193 1.183877 1.00889 1.14532 

0.4 -0.04816 1.156393 0.90514 0.94355 

0.5 -0.06679 1.221259 1.00295 0.95676 

0.6 -0.03061 1.109165 0.89037 0.84872 

0.7 0.172082 1.362857 0.95295 0.88377 

0.8 -1.10519 9.782248 7.97214 7.02703 

0.9 0.284891 1.698229 1.20852 1.76406 

 

Table 2: s.e(b’s) for different values of p 

s.e(b’s)/p b0 b1 b2 b3 

0 0.07756 0.08761 0.0861 0.08408 

0.1 0.09578 0.1099 0.10348 0.10329 

0.2 0.11186 0.12074 0.11604 0.11677 

0.3 0.1408 0.1591 0.14615 0.15254 

0.4 0.15212 0.17465 0.15216 0.14906 

0.5 0.18286 0.21983 0.19691 0.18197 

0.6 0.20678 0.23007 0.20483 0.18995 

0.7 0.26785 0.34846 0.27547 0.25306 

0.8 1.4287 8.27226 6.82195 6.09238 

0.9 0.07756 0.08761 0.0861 0.08408 

 

Table 3: AIC and SIC against different values of p 

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

AIC 0.5725 0.7853 0.9184 0.9841 0.9959 0.9543 0.8528 0.6506 0.3914 

SIC 0.5922 0.8049 0.9381 1.0037 1.0155 0.9740 0.8724 0.6702 0.4110 
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a. β’s(b’s) 

 

b. s.e(b’s) 

 

c. AIC/BIC 

 

Figure 1: Estimates of β’s(b’s), s.e(b’s), AIC/SIC against different values of p 

 

4. Discussion on results 

Tables 1-2 compares the performance of the modified hidden logit estimates with the estimates of ordinary logit for 

different values of p. From Figure 1(a-b), we can notice that for the above experimental conditions the modified hidden logit 

estimates and their standard errors (S.E) are moving away from ordinary logits for higher values of p. It can be seen that as 

the value of p increases, a negatively skewed pattern can be seen in values of β’s (b’s)  and s.e(b’s)  We can also notice that 

the estimated values of modified hidden logit for Corstange (2004) RR design taking p = 0.1,becomes very near to the 

estimates of ordinary logits. The estimates of ordinary logits are shown against p = 0. From the figure 1(b) it is depicted that 

as the value of p increases, the s.e(b’s) also increases. The s.e(b’s) becomes the least for p = 0 which are the values S.E for 

ordinary logits. As a summary we can say that the s.e(b’s) are moving towards the standard errors of ordinary logits for 

lower values of p and near to the standard errors of ordinary logits for p = 0.1. The AIC and SIC are calculated in table 3 for 

logit estimation using Corstange (2004) RRT taking different values of p. The figure 1(c) demonstrates that for p below 0.4, 

values of AIC and SIC are increasing and start decreasing p as 0.5 and above. We can also notice that AIC and SIC values 

are least for 0.9.  

 

4.1. Estimates of β’s (b’s), s.e(b’s), and AIC/BIC for different values of p and T for Mangat and Singh (1990) RRT 

In current section, we estimate the modified hidden logit model for Mangat and Singh (1990) RRT for different values of p 

by fixing odd values of T. Table 4-6  and figure 2-5 (a-e), show the estimates of β’s (b’s), their S.E and AIC/SIC and their 

graphical presentation respectively for different values of p while T is fixed. Point to be noted is that, for all the tables of 

estimates and SE, the values against p = 1 are the values of ordinary logits. 
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Table 4: Estimates of β’s (b’s) for different values of p when T is odd 

T   

P 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 

b0 -0.3327 -0.4925 -0.8604 -5.7472 8.1818 0.3714 0.1366 0.0060 -0.0152 0.0195 

b1 0.7803 0.7047 0.5468 -1.2376 22.1450 1.3177 1.1500 1.0890 1.0009 0.9565 

b2 0.9900 1.0489 1.2911 36.5650 0.6213 0.4359 0.7639 0.8244 0.8538 0.8325 

b3 0.9020 0.8795 0.7156 19.0722 18.4375 1.0151 0.9295 0.9627 0.8848 0.8855 

0.3 

b0 -0.8105 -5.4961 30.6839 45.8133 0.3735 0.2550 0.2225 0.1667 0.1648 0.0777 

b1 2.0737 11.6376 11.0249 54.2886 1.2830 1.0855 1.0469 1.0510 1.0345 1.0773 

b2 2.2632 18.0736 14.4182 38.2762 1.1437 0.9485 0.9461 0.9232 0.9204 0.9766 

b3 2.2451 17.9727 20.2562 44.1005 0.8999 0.8926 0.9077 0.9233 0.9302 0.9520 

0.5 

b0 33.2134 0.5251 0.2633 0.2551 0.1698 0.1698 0.1761 0.1544 0.1512 0.1547 

b1 28.7082 0.7060 0.6677 0.7989 0.8497 0.8497 0.8386 0.9224 0.9615 1.0146 

b2 -5.0307 0.1320 0.4346 0.7187 0.8091 0.8091 0.8389 0.8809 0.8735 0.9045 

b3 4.5744 0.4572 0.6494 0.7789 0.9111 0.9111 0.8805 0.9551 0.9652 1.0090 

0.7 

b0 -0.0205 -0.0765 -0.1070 -0.0522 -0.0001 -0.0271 -0.0129 -0.0496 -0.1061 -0.0896 

b1 1.0200 1.0311 0.9283 0.9986 1.0161 1.0390 1.0452 1.0302 1.0386 0.9986 

b2 1.1786 1.1607 1.0407 1.1046 1.1467 1.1832 1.1410 1.1261 1.1109 1.0586 

b3 0.9508 0.9404 0.8900 1.0133 1.0655 1.0990 1.0867 1.0851 1.0645 1.0175 

0.9 

b0 -0.1251 -0.1180 -0.1100 -0.1045 -0.1086 -0.1008 -0.0998 -0.0970 -0.0936 -0.1002 

b1 1.0455 1.0371 1.0311 0.9998 0.9749 0.9713 0.9583 0.9264 0.9371 0.9285 

b2 1.0406 1.0263 1.0282 0.9998 0.9739 0.9772 0.9643 0.9320 0.9411 0.9274 

b3 

 

 

 

 

1.0142 1.0097 1.0046 0.9771 0.9513 0.9414 0.9332 0.9025 0.9060 0.9069 
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a. T=0.1 

 

b. T=0.3 

 

c. T=0.5 

 

d. T=0.7 

 

e. T=0.9 

 

Figure 2: Estimates of β’s (b’s) against different values of p when T is odd 
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Table 5: s.e (b’s) for different values of p when T  is odd 

T   

P 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 

s.e(b0) 0.1598 0.2466 0.5193 39.0504 34.2730 0.4183 0.2279 0.1522 0.1057 0.0739 

s.e(b1) 0.1359 0.1907 0.3091 9.3556 88.1510 0.4950 0.2565 0.1665 0.1083 0.0732 

s.e(b2) 0.1584 0.2435 0.5078 258.1015 3.6923 0.2791 0.1990 0.1398 0.0987 0.0679 

s.e(b3) 0.1516 0.2216 0.3561 133.6729 72.5796 0.4220 0.2257 0.1552 0.1018 0.0710 

0.3 

s.e(b0) 0.7614 19.2822 744.9627 182.4418 0.4091 0.2474 0.1771 0.1328 0.1015 0.0756 

s.e(b1) 1.1681 40.9811 272.9713 217.5677 0.4792 0.2606 0.1830 0.1386 0.1048 0.0810 

s.e(b2) 1.2835 62.6860 351.4991 152.0934 0.4502 0.2416 0.1740 0.1291 0.0985 0.0773 

s.e(b3) 1.2484 62.2894 493.1158 176.5989 0.3739 0.2297 0.1673 0.1276 0.0981 0.0747 

0.5 

s.e(b0) 149.3713 0.4714 0.3078 0.2493 0.1608 0.1608 0.1312 0.1105 0.0925 0.0766 

s.e(b1) 129.5684 0.3531 0.2425 0.2186 0.1488 0.1488 0.1202 0.1079 0.0929 0.0798 

s.e(b2) 24.2287 0.2592 0.2085 0.2073 0.1447 0.1447 0.1204 0.1049 0.0875 0.0740 

s.e(b3) 21.0472 0.2970 0.2308 0.2071 0.1495 0.1495 0.1191 0.1066 0.0901 0.0771 

0.7 

s.e(b0) 0.2357 0.2047 0.1748 0.1562 0.1394 0.1252 0.1098 0.0979 0.0872 0.0764 

s.e(b1) 0.2446 0.2130 0.1678 0.1586 0.1441 0.1315 0.1156 0.1017 0.0906 0.0771 

s.e(b2) 0.2773 0.2374 0.1863 0.1752 0.1613 0.1484 0.1266 0.1116 0.0981 0.0829 

s.e(b3) 0.2366 0.2029 0.1660 0.1628 0.1513 0.1390 0.1207 0.1072 0.0937 0.0794 

0.9 

s.e(b0) 0.1091 0.1050 0.1010 0.0961 0.0919 0.0882 0.0850 0.0810 0.0776 0.0745 

s.e(b1) 0.1143 0.1094 0.1049 0.0975 0.0914 0.0875 0.0835 0.0776 0.0749 0.0714 

s.e(b2) 0.1165 0.1111 0.1070 0.0998 0.0937 0.0901 0.0861 0.0801 0.0773 0.0734 

s.e(b3) 0.1123 0.1078 0.1033 0.0963 

0.0903 

 

 

 

0.0860 0.0824 0.0766 0.0737 0.0707 
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a. T=0.1 

 

b. T=0.3 

 

c. T=0.5 

 

d. T=0.7 

 

e. T=0.9 

 
Figure 3: s.e (b’s) for different values of p when T is odd. 
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Table 6: AIC/SIC for different values of p when T  is odd 

T 
 

P 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 
AIC 1.2458 1.3471 1.4133 1.4482 1.4437 1.4136 1.3339 1.2051 1.0187 0.7229 

SIC 1.2655 1.3668 1.4329 1.4679 1.4633 1.4332 1.3535 1.2248 1.0383 0.7425 

0.3 
AIC 1.4213 1.4488 1.4571 1.4295 1.3996 1.3334 1.2400 1.1113 0.9345 0.6256 

SIC 1.4409 1.4685 1.4767 1.4492 1.4192 1.3530 1.2596 1.1309 0.9541 0.6452 

0.5 
AIC 1.4485 1.4438 1.4175 1.3763 1.2347 1.2347 1.1421 1.0027 0.8708 0.6624 

SIC 1.4681 1.4634 1.4371 1.3959 1.2544 1.2544 1.1617 1.0224 0.8904 0.6821 

0.7 
AIC 1.3184 1.2789 1.2592 1.1624 1.0876 1.0104 0.9114 0.8283 0.7293 0.6299 

SIC 1.3380 1.2986 1.2788 1.1821 1.1073 1.0300 0.9310 0.8479 0.7490 0.6495 

0.9 
AIC 0.8798 0.8601 0.8344 0.8078 0.7871 0.7529 0.7342 0.7100 0.6581 0.6223 

SIC 0.8994 0.8798 0.8540 0.8274 0.8068 0.7725 0.7538 0.7296 0.6778 0.6419 
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a. T=0.1 

 

b. T=0.3 

 

c. T=0.5 

 

d. T=0.7 

 

e. T=0.9 

 

Figure 4: AIC/SIC against different values of p when T is odd. 

 

4.2. Discussion and Comparison  

Table 4 and figure 2(a-e), depict the estimates of modified hidden logit for the above experimental conditions. We can 

notice that the modified hidden logit is resulting in the estimates, which are quite close to ordinary logits for higher values 

of T and p. Taking lower values of T, the estimates of modified hidden logit model for Mangat and Singh (1990) RRT are 

highly deviating from usual values of ordinary logits for p = 0.4 - 0.5. But when p is greater than 0.5, so estimates are 

moving towards the ordinary logits. We can see that when p increases the estimates decrease and transfer towards ordinary 

logits. The estimates of ordinary logits are shown against p = 1 in all tables. Table 5 and figure 3(a-e), depict the SE of 

estimates of modified hidden logits. We can notice that the standard errors are quite close to ordinary logits for higher 

values of T and p. Taking T = 0.1, the S.D of estimates of modified hidden logit model for Mangat and Singh (1990) RRT 

are very high as compared to the SE of ordinary logits for p = 0.4 - 0.5. But when p is greater than 0.5, SE of estimates are 

moving towards the SE of ordinary logits. One can see that if p and T increase, the SE of estimates of modified hidden logit 

model for Mangat and Singh (1990) RRT keeps on decreasing and approaching to the SE of estimates of ordinary logits.  

From table 6 and Figure 4 (a-e), it can be seen that the values of AIC and SIC are increasing for low values of p and T, but 

begin decreasing for p  = 0.5 and above for all values of T. We can also notice that AIC and SIC values are least for p and T 

as 0.9 which shows a good model fit.  

 

5. Conclusion and Recommendation 

The findings of this research depict the estimates of modified hidden logit and compare the performance of these estimates 

with ordinary logit for two RRT’s. As a summary, we can say that the estimates are moving towards the original values for 
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every increase in p and T and very near to ordinary logits for taking p and T as 0.9 for Mangat and Singh (1994) RRT. We 

discover that the estimates of hidden logit move toward to true parametric values as the p and T increases. Also, we examine 

that the standard errors of estimates decrease as p and T increases, and is least for ordinary logit taking p and T as 1. Also, 

we observe that hidden logit estimates for Mangat and Singh (1990) are closer to the true parametric values as compare to 

Corstange (2004) and they show raise in accuracy. So modified hidden logit estimation using Mangat and Singh (1990) is 

more appropriate to obtain true estimates of population proportion in case of sensitive characteristics. We know that a lesser 

AIC/SIC value designates a good fit. So in our proposed model, AIC and SIC values are decreasing for higher values of p 

and T. Hence we can conclude that for higher values of p and T Mangat and Singh (1990) gives best estimates. This paper 

has an extraordinary assurance towards application and estimation of logistic models when one is dealing with sensitive 

attributes. We recommend that the proposed methodology of modified hidden logits can be extended and applied to more 

RR models.  
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